
I 
IT) 
IM 

< 

2 

NATIONAL ADVISORY COMMITTEE 
FOR AERONAUTICS 

TECHNICAL NOTE 2511 

CALCULATION OF HIGHER APPROXIMATIONS FOR TWO-DIMENSIONAL 

COMPRESSIBLE FLOW BY A SIMPLIFIED ITERATION PROCESS 

By W. H. Braun and M. M. Klein 

Lewis Flight Propulsion Laboratory- 
Cleveland, Ohio 

^ Reproduced From 
H <3> Best Available Copy 
«^  iß 

w 8-a 

U OC'S 
<E := '% 

5» °- S 
O o £ 
•ami    *'!■"       ^1 

I™ "o J3 

ra § "8 October 1951 

a 

Washington 

ßQrnoD-t^3/*io 



NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE 2511 

CALCULATION OF HIGHER APPROXIMATIONS FOR TWO-DIMENSIONAL 

COMPRESSIBLE FLOW BY A SIMPLIFIED ITERATION PROCESS 

By W. H. Braun and M. M. KLein 

SUMMARY 

The iteration equations for a simplified solution of the nonlinear 
compressible-flow equation are developed and applied to two profiles, 
the ellipse and the Kaplan section. Limitations imposed on the solu- 
tions by simplifications in the differential equation and the boundary 
conditions are discussed. The velocities near the midchord, the criti- 
cal and potential limit free-stream Mach numbers, and the extent of 
isentropic supersonic regions are calculated to four approximations 
for the Kaplan section and to six approximations for the ellipse. The 
development of the iteration equations and the presentation of the 
results are made in conformity with the Karman transonic similarity 
law and comparisons are made with other solutions. 

INTRODUCTION 

Because of its nonlinear nature, the partial differential equa- 
tion that describes the flow of a perfect compressible fluid has not 
yielded completely to any method of solution so far advanced. In 
fact, in such methods as the iteration procedures and the variational 
method (reference l), it is not even attempted to find a closed-form, 
solution or the general term of a series expansion; rather, a finite 
(and usually small) number of terms of a series expansion are obtained. 
Unfortunately, in such cases, whereas more and more terms are required 
as compressibility effects become more pronounced, the difficulty of 
securing the higher terms becomes inordinately greater. Although the 
difficulties of nonlinearity may be overcome by a transformation to 
the hodograph plane and the choice of a convenient gas law (refer- 
ence 2), a new problem arises in the solution of any boundary-value 
problem because of the distortion of the boundary. 

The solutions by iteration are begun by expanding the velocity 
potential as a series in terms of some flow parameter; it is then pos- 
sible to determine each term from those which precede it by solving a 
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linear equation. Whenever the flow is over a thin "body at relatively 
high speeds, it is preferable to expand the potential in terms of some 
parameter characteristic of the "body, such as thickness ratio, camber 
coefficient, or angle of attack.  The first term of the solution is a 
constant representing the undisturbed flow and the second is the well- 
known linearized or small perturbation compressible flow (Prandtl- 
Glauert solution). The procedure for obtaining successive terms is 
outlined by Ackeret (reference 3) and extended by Kaplan (reference 4), 
who applies it to a bump with no stagnation points and to a circular- 
arc profile. The higher-order terms were shown to be of greater con- 
sequence as the Mach number increased. 

Recently Perl and Klein (reference 5) applied the Prandtl-Ackeret 
procedure, without specifying beforehand the parameter of expansion, 
to flows about thin bodies at transonic speeds.  In their analysis, 
the flow equation is transformed to a new set of coordinates in which 
it is effectively expanded in powers of ß2 = 1 - MQ2, where MQ is 
the free-stream Mach number.  In the transonic range  (ß -* O), the 
lowest order terms in ß2 are dominant, and the transonic part of the 
flow equation is easily extracted. 

The resulting transonic equation does not of itself preclude- size- 
able perturbations as long as  ß2 is chosen sufficiently close to 
zero; however, the Perl-Klein process uses the customary small pertur- 
bation boundary condition, so that the solution of the complete prob- 
lem - differential equation and boundary conditions - is termed the 
transonic limiting solution, limiting in the sense of Mach number near 
unity and geometric parameter near zero. This limiting nature of the 
solution is further emphasized by the form of the expansion parameter, 
which is found to be simply Karman's transonic similarity parameter 
(reference 6), a quantity which combines the three definitive character- 
istics of the flow: the ratio of specific heats {that is, the type 
of gas), the free-stream Mach number, and the geometric parameter. 

Although the iteration process greatly facilitates the solution 
of a nonlinear problem by substituting for it a series of linear prob- 
lems, it, in turn, raises the difficult question of convergence of the 
series solution. The present analysis was made at the NACA Lewis lab- 
oratory to extend the calculations necessary to estimate the convergence, 
of the iteration process of reference 6 where it is applied to two 
profiles, the ellipse and the Kaplan section. In particular, it will 
be found that the successive approximations suggest convergence not 
only of completely subsonic flows but also of some isentropic mixed 
flows. 

There has been some dispute concerning the stability of the second 
type flow (see the resume of these discussions by Sears, reference 7); 
one of the latest contributions is a stability investigation by Kuo 

LO 
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(reference 8), which indicates that decelerating transonic flows are 
unstable for a certain type disturbance. The result of the instability- 
is the formation of a terminal shock in the supersonic region, with a 
consequent asymmetry.  Some British measurements (references 9 and 10), 
however, indicate that small supersonic•regions not terminated by shock 
waves may exist, or if shocks do occur, it is possible that they may 
not change the flow greatly from the isentropic pattern, provided that 
the free-stream Mach number is only slightly greater than critical. 
The isentropic mixed flows are therefore dealt with herein under the 
assumption that they are indicative of the nature of some real flows. 

Another unpleasant feature of iteration methods, in addition to 
the question of convergence, is the large amount of labor involved. In 
obtaining the higher approximations by the present method, it is con- 
venient to make certain simplifications in the differential equation 
so that the labor does not become too great. The justification for 
such changes and the limitations they impose on the solution will be 
discussed as they arise. 

SMALL-PERTURBATION TRANSONIC FLOW 

In reference 5 it is shown that the partial differential equation 
governing two-dimensional, irrotational, compressible flow may be writ- 
ten 

(ß: V + <Pyy) L1 " ¥ V  <2lpx + **    + Oy2)] 

= [rM (2(PX + <PX
2)   + ^ Mo4*/) *xx + Mo^y^yy + 2MQ2  (1 + q>x)  «PyCPxy 

(1) 

where 

ß2 = 1 - MQ
2 

<p   perturbation potential 

X        ratio of specific heats of the gas 

MQ  free-stream Mach number 

rM = V (1 + ^ MQ2) 
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and the free-stream velocity lias magnitude unity and the direction of 
positive x.  (A complete list of symbols is given in the appendix.) 
If the flow is over an isolated "body whose surface is defined by 

y = T g(x) 

where T is the thickness ratio, the boundary conditions on the per- 
turbation potential are 

<p    = T(1 + q> )   gx(x)       at    y = T g(x) 

/ .(2) 
<px = <py = 0 at    x2 + y2 = - 

For purposes of solution, it is desirable to write the second-order 
terms of equation (l) in normal form, as may be accomplished by the 
Prandtl-Glauert transformation.  If the transformation is modified 
slightly, however, the coefficient of a nonlinear term of the same 
order in ß2 also becomes independent of flow parameters. The modi- 
fied transformation is 

x = x 

n = ßy y    (3) 

r 
F(x,T|) = J* <p(x,y) 

ß2 

and it transforms the problem consisting of the differential equation (l) 
and the boundary conditions (2) into 

5> /    MO2       1   9 2M02     \ 
(1 - 2Fx)Fxx+ F^ - ß \(r-D^ F^ + - F^ + -jT- F^ '+ 

ß4 fr-1 MO2 F  2«  + rzl ÜD_       2^       +züFjr    L 
ß    \— —2 Fx AF  + 2     Ti *xx +      r  2 "xFrfx^r 

FM rM M ' 

P'2r2T] j.   2       T]       TJTj/ 

LO 
r- 
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TlM 
F^ = (1 + cpx) -g- gx at _ Tj = ßTg(x) (5) 

« ß 

Fx = F_ = 0 at x2 + T]2/ß2 = co (6) 

'       Figure 1 is the reciprocal of the transformation coefficient %/ß  of 
equation (3). 

DO 
-j 
oi A transition is now made to the small-perturbation transonic prob- 

lem. For transonic speeds, the parameter ß2 approaches zero so that 
the right side of equation (4) may be neglected.  Because of the non- 
linearity of the right side, omission of these terms is especially 
justified if the perturbations are small. If the body considered is 
thin (l >>x) and there are no stagnation points, cpx< <1 and the 
velocity <px may be neglected in boundary condition (5). For flows in 
which stagnation points occur, the effect of these stagnation points 
is assumed negligible in the region of interest in the flow field. 

^      Furthermore, in boundary condition (5), because the product ß  is a 
very small number and because (as will be shown) the solution for 
equation (7), which follows, has no singularities on the x-axis, it 

* is assumed that the condition (that the velocity normal to the body is 
zero) may be made on the x-axis rather than on the body itself.  This 
assumption is justified in reference 5.  Consequently, the small- 
perturbation transonic flow problem is defined by 

0 (7) 

(8) 

x2 + T]2/ß2 = « (9) 

For values of Fx < i, the flow equation (?) is elliptic and for 
1 Fx > 2 it is hyperbolic • In figure 2 the parabolic value of the per- 

ß 1 
turbation velocity, <PX = Ü— (or Fx = -), is compared with the excess 

2FM 2 

of the critical velocity over free-stream velocity, that is, the pertur- 
bation velocity at which a flow becomes locally sonic, as calculated 
from the Bernoulli equation. For such values of MQ for which the two 
curves substantially agree, the differential equation (7) may be expected 
to describe mixed flows properly. The agreement is acceptable in the 
range 0.9 < MQ < 1.1, which is approximately the range of accuracy which 

(1 - 2Fx) F rxx + F 

^ = 
ß3 

Sx T) 

Fx = FTT 
0 x2 
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would have been suggested by equation (4).  It is also observed at this 
point that if the error in the boundary condition (8) is to be limited 
to 10 percent as compared with the exact boundary condition (5), it is 

necessary that <PX < ^. Thus an examination of both the differential 

equation and the boundary condition indicates that flows in the transonic 
domain will be described sufficiently accurately only if they lie in the 

interval 0< J^x)^' 

<($) 
x,y-coordinates with respect to s and t. The reciprocal of the 
Jacobian of the transformation is plotted in figure 4 as a function 
of t for several values of s. 

The first derivatives of the potential in the new system are 

Fx = (sinh s cos t Fg - cosh s sin t Ft)j (13) 

F = (cosh s sin t F„ + sinh s cos t F+)j
_:L (14) 

r- 
The flows to be solved herein will be limited to those about bodies      w 

which are symmetric about the x- and y-axes. A limitation to subsonic 
free-stream Mach numbers is also necessary in order that the trans- 
formation (8) does not become imaginary. The results of the present 
method for high subsonic speeds can be applied, however, to slightly 
supersonic free-stream flows for which the detached shock wave is far 
ahead of the body and the Mach number downstream of the shock is as 
much below unity as the Mach number upstream is above unity. In this 
sense, the analysis is applicable to the entire range of transonic 
velocities. 

ITERATION PROCESS 

For convenience in describing the body, a transformation is made 
to elliptic coordinates, one of which is cyclic and can indicate posi- 
tion around the circumference of the body. These coordinates are com- 
pared with cartesian coordinates in figure 3. The equations defining 
the transformation are 

x = cosh s cos t (10) 

T] = sinh s sin t (ll) 

j(*>3\ =  cosh2 s - cos2 t = sinh2 s + sin2 t        (12) 

where jf^^-l is the Jacobian or functional determinant of the 
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which become at the axis of the body 

* 

Fv = - —^-r F+ (15) x    sin t x ' 

F„ = -J=-r Fq (16) ri      sin t s ' 

^       Substitution of these into the boundary condition (8) yields 

en 

Fs = - 7^ gt       s = ° (17> 

Boundary condition (9) becomes 

Fs = Ft = 0       s = - (18) 

An exact transformation of the flow equation (7) would result in 
the inverse Jacobian appearing in the nonlinear term, and it would be 
necessary to expand it in a Fourier series before employing a method 
of solution involving the separation of variables.  The process used 
herein would then require the solution of an infinite number of ordinary 
differential equations.  In order to simplify the analysis and to reduce 
the computational work that would ordinarily accompany such an expan- 
sion, only its first or constant term is retained. That is, in the 
transformation of equation (7) to elliptic coordinates, the Jacobian 
is set equal to 1, which is the first term in its expansion about the 
point s = 0, t = it/2.  Of course, this simplification will restrict 
the region in which the equation is valid. A further restriction on 
the size of the region of validity is made by restricting the calcula- 
tions to velocities on or near the surface of the body; thus s * 0 in 
the differential equation. 

If the relation 

FXX + FT]T] = J   (Fss + Ftt) 

and equations (13) and (14) for the derivatives of Fx and F- are 
used, equation (7) with the approximations 

J- 1 

v sinh s *  0 
and 

cosh s * 1 
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may be written 

'SB ^ *tt = " * °X±i " "t öt 
F„_ + Ftt = - 2 sin2t Ft ^- (sin t Ft) 

= - 2 sin3t FtFtt - 2 sin2t cos t FtFt       (19) 

This equation is proposed for use as a description of the flow in a 
region about the origin whose boundary is set by the criteria 

J_1 -If 0.10 and s <-0.1. Such a region in the xT]-plane is showr 
in figure 5, where for comparison a 10-percent-thick (in the xy-plane) 
Kaplan section is included as a typical profile. The length of the 
rectangle is seen to be about 0.3 chord. 

With the change in the region of validity of the differential 
equation, there must be a change in the boundary conditions to corres- 
pond to this region.  The surface boundary condition (7) may be 
retained as is; therefore only the outer boundaries (dashed rectangle 
in fig. 5) of the region lack boundary conditions. As a substitute 
for conditions on these boundaries, the boundary condition (18) at 
infinity is taken as a guide to postulate that, in the restricted 
region, both Fs and Ft must decrease with increasing s. The fav- 
orable comparison with more complete solutions shows that this con- 
dition prescribing monotonic character of the potential derivatives is 
sufficient. These comparisons are made in subsequent sections. 

The method of solution of the problem, as formulated by the dif- 
ferential equation (19)., the boundary condition (17), and the condition 
of monotoneity in s, is to write the transformed potential F as an 
infinite series 

12  3 
FSF+F-+F + ... (20) 

where it is assumed that the succeeding terms become progressively 
smaller at such a rate as to insure convergence of F and its deriva- 
tives. Definition (20) is placed in the flow equation (19), which is 
then arranged as follows: 
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>v 

F
Ss + Ftt 

2 2 

+ FSS   +  Ftt 

r 

11 
2  sin3t FtFtt 

1 1 
2 sin2t  cos t Ftrt 

33 2112 12 
+.FSS  + Ftt   )= /   -  2   sin3t(FtFtt + FtFtt)   -  2  sin2t  cos t 2 FtFt 

n    n 
+Fss + Ftt 

n-1 v n-v n-1 v n-v 
2 sin3t Z FtFtt - 2 sin2t cos t 2 FtFt 

v=l V=l 

<v 
(21) 

This arrangement indicates that the equation should he divided for pur- 
poses of iteration into a sequence of equations each corresponding to 
one line of equation (2l). In this way all terms which have the same 
total superscript value are grouped together; this procedure will later 
be seen equivalent to separating out terms of the same order in the 
Karman similarity parameter. 

The boundary condition on the body is also divided in a particular 
1 

way among the terms in the series solution.  The first term F makes 
the total contribution: 

1 IT M 
FS " " ß3  

&t s = 0 (22) 

whereas the boundary conditions for all other terms are homogeneous: 

n 
Fs = ° s = 0 n > 2 

n 

(23) 

n 
The condition of monotoneity requires that all F_ and F,  are monotone 
decreasing in s. 

1 
FIRST APPROXIMATION, F 

The first approximation differs from subsequent approximations in 
that it requires the solution of the homogeneous Laplace equation (first 
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line of equation (2l)) with a nonhomogeneous -boundary condition (22). 
Higher approximations involve the solution of nonhomogeneous, or Poisson, 
equations with homogeneous boundary conditions. For this reason and 
to obtain the necessary start in the iteration procedure, the first 
approximation is treated separately. 

The solution of this first iteration, which takes account of the 
monotoneity of the derivatives and of t as the cyclic coordinate, is 

1   °° 
F = Z e~kS (ak cos kt + c% sin kt) (24) 

k=l 

Before this form is introduced into the boundary condition (22), the 
function g (0,t) is expanded into a Fourier series and written 

g (0,t) = Z Sj sin jt (25) 
3 

In conformance with the restriction to bodies which are symmetric about 
the y-axis and about which there is no circulation, no cosine terms 
appear in the expansion. The index j is limited to odd values 
because of the symmetry of g about t = |.  The introduction of expres- 

sions (24) and (25) into the boundary condition on the body (22) leads 

to 

- Z k(ak cos kt + o^ sin kt) = - — Z jBj cos jt     (26) 
k=l ß  3=1 

j  odd only 

It follows that 

F = !?M I    8k e"
ks cos kt (27) 

ß5 k=l 

k odd only 

1     xrM The nature of the dependence of F on -=-, a quantity combining 
ßö 

the entire dependence of the first approximation on the parameters of 
the flow (reference 6), has the consequences immediately observed from 
equation (21) that 

in 
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CO 
ro 
oi 

The quantity 

2 
F 

3 
F 

n 
F 

tr 
K 5 

M 

^v 

(28) 

J 

is recognized as the similarity parameter of reference 5, and reduces 
to Karman's similarity parameter (reference 6) as MQ -»• 1. Hence, as 
previously claimed, equation (2l) is the ordering in powers of K with 
respect to this parameter. The similarity parameter is plotted as a 
function of MQ for various x    in figure 6, which is reproduced from 
reference 5. 

n 
Writing F = 

formation (3), as 

n n 
fK  gives the perturbation potential, by the trans- 

T i1       2    3 2        \ <p = | \f + fK + fK^ + . . .J 

)• 

-ks 
cos kt f2K f3K2 ] (29) 

The first term inside the parenthesis represents an incompressible flow. 
Hence, for very small values of T, for which K is also small, the 
transonic potential (29) reduces to the Prandtl-Glauert rule. 

HIGHER APPROXIMATIONS 

n 
Inasmuch as all the F beyond the first satisfy the same general 

form of differential equation and have the same boundary condition, it 



!2 HA.CA TU 2511 

n 
is possible to treat the general form of F rather than each approxi- 
mation separately. In the following discussion, an induction argument 
will be used to show that every term in the series for the transformed 
potential has the form 

\(|j.+3)   \(u+3) 
X   ,    -3       -3      X    X     X  p        . _ps     , 
F = KX 2       2      (Lrp + Mrps + Wrps + * • • )e   COS rt 

r=l     P=l 
(30) 

r odd only 

XX       X 
where L^, M^p, and Nrp are constants and u is the number of terms 

in the expansion (equation. (25)) of q(t), the function characterizing 
the shape of the body. The main part of the argument is to show that 
if equation (30) is true for all X < n, then it is also true for 
X = n. 

From equation (2l), the differential equation satisfied by any 
n 

term F  (n > l)  is 

n    n n-1 v n-v n-1 v n-v 
F  + F++ = - 2 sin3t 2 FtFtt - 2 sin2t cos t 2 F±Ft     (3l) 
SS    ~fc"fc y _2_ V =1 

v      n-v 
Use of the postulated form (30) for F  and F    leads to the expan- 
sion for (3l), 

in 
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v(u+3)  (n-v)(U43) v(u+3)  (n-v)(u+3) 
n    n  ■   jrii n-1   -3     -3       -3     -3 
Fss + Ftt = " "8"  2    2       Z        2      Z 

v=l  m=l      p=l      k=l     r=l 

v     v     v n-v   n-v    n-v 
(Lkm + sMkm + ^km + • • •) (Lrp + sMrp + s2wrp + • • ■) 

e      |(-3kr -kr) cos (k+r+l) t + (-3kr +kr) cos (k-r+l)t + 

(3kr2+kr) cos (k-r-l)t + (3kr2-kr) cos (k+r-l)t + 

(kr+kr ) cos (k+r+3)t + (kr-kr2) cos (k+r-3)t + 

(-kr+kr2) cos (k-r+3)t + (-kr-kr2) cos (k-r-3)t      (32) 

k, r odd only 

The right side of the foregoing equation is the sum of products involv- 
V     V    V 

ing the constants L^.? M^, 3%^ •   •   ■>  powers of s, exponentials in 

s,  and cosines of angles of multiple t. Accordingly, after all five 
summations have "been accomplished and regroupings made according to 
powers of s, exponentials in s, and multiples of t, the equation 
will be 

n(u+3)  n(u+3) 
n n -3 -6        n n n 
Fss + Ftt = Kn     ,?, ?n    (Afaj + sBhj + s2chj +  '   •   •)  e"JS cos ht 

h=l j=2 

h odd only 

(33) 

If a solution 

n(u+3) 
n -3      n 
F = K11       2       qh  (s)  cos ht (34) 

h 

h odd only 
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is assumed, the coefficient of each harmonic term in (33) must vanish. 

Thus 

£ n 

as2 
S ih (B) 

n(ia+3) 
n        -6  n    n     gn 

h\  (s) =   2 (Ahj + sB^ + s ChJ + 
0=1 

,) e"J£ 

(35) 

h odd only 

The particular integral of this equation is 

n -hs 
n n      e-js        A^se 
ph = A ^j T— + 

j^h    "J  j2-h2 2h 

n 
2    Bhi 

-js -Js 
se ,     2je 
.2 ^2       / .2    2x2 
)  -h (j  -h  ) . 

5      -hs 
Bhh6 

\"h+4h2j 

n    e"
js 

A CllJ^T2 
32   ,     4,1s     ,   6,j2+2h2 

= 2 h2       (j2-h2)2 

n.        ,    / 3        2 

m W      4h2      4h3 0 
(36) 

Here the notation      2       refers to  a summation over all values of    j 

<#h n    -hs n 

except    j  = h.     The complementary function is    G^e       ,  where G^    may 
he found from the "boundary condition on the hody (23): 

n 

h  Go,   +1 —S: =   0 
^     Vds /a=0 

n > 2 (37) 

Then 
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n 
11        l(^\ 
^      h Vds /s=o 

-he 
n 

e        + P> 

n(|i+3) 
-6      n n pn „n 
2      (Ifcj + sM^ + s%j + B^J + 
j=l 

■js (38) 

where. 

n 

ha.' =    2 
j£i s52"h2 

n n 
A       +B, 2J      ,   £       6j2+2h2 
Ahj  + ^j ~^2 + %   (j2_h2j2 + ] 

n 

hih =    Z 

n        n 2j n 

j£i h(j  -1^) 
■JAhJ +BhJ ^ T^J  + C*J 

6j2+2h2    +     4j 

(j2-h2)2     (j2-h2]l 

/in 1 n 1 n 1 \ 
lAhh-i2+Bhh-i^ + C!hh-4+-   •   • ) 
\     ai 4h° 4ii / 

n 

^?(? 
4j 

n 
C-u,  + Mhj =   .1 -X72 \>J  + T2~2 Chj 

j^h j  -h    \ j  -h ) 

n 
'n       1       *        1        *        1 

%! = " \AKh 2h + Bhh—2+CMi~2 + 

\ 4h 4h ■) 

=     2 
ht      j/h j2-h2    hJ 

n 
C, .  +  .   .   . 

N- hlL 
( 

n       1       ?        1 
=  " 1%! Ih  + Chh -2 + 

4h ■) 

hh 

n       1 
Chli 6h + (39) 
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(The maximum value of h for any n in equations (38) and (39) is 
n(ki+3)-3.) Finally, if equation (38) is placed in the assumed form (34), 
the n**1 approximation "becomes 

n(n+3)    n(n+3) 
n -3 -3        /n n 2

n 3n \ 
F = K11 2 2 \Lhj + sM^ + s Nhtj + s 0^ +  .   .   ./ e"

JS cos ht 

(40) 

h odd only 

which is exactly the form postulated in equation (30) 
v 

It has heen shown that if F has the form (30) for all v < n, it 
will also have that form for v = nj there remains only to test this 
form on a particular approximation in order to complete the induction 
proof.  If the second approximation is taken to correspond to the 
nth    approximation of the proposition, a comparison of all previous 
approximations (equation (27), in this case) indicates that the ntü 

(second) and, hence, all approximations subsequent to it must obey 
the form (30). The fact that the method of solution for the first 
approximations differs from that of subsequent approximations does 
not interfere with the argument. 

The actual mechanics of the iteration process have "been derived in 
the foregoing development and are outlined by equations (32), (33), 
(39), and (40). . For example, after the first approximation has been 
obtained, the differential equation for the second may be found by 
setting n = 2 in equation'(32) and letting k, r, m, and p assume 

1 
values in accordance with the form of F. After all the coefficients 
of each harmonic on the right side have been gathered, the differential 
equation will have the form (33) . The application of the formula (39) 

2   2 
yields the constants of the solution (40) in terms of the A^j, B^j, 

11 2   2 
... of the differential equation. The Lhj, Mj^, . . . , I^j, M^, 

3   3 
. . . are then known and are sufficient to determine the Lhy  M^, . . 

if the foregoing process is repeated. 

MAXIMUM VELOCITY INCREMENT AND CONVERGENCE 

For flow over a profile symmetric about the y-axis, the maximum 
velocity increment occurs at the midchord. At the critical free-stream 

-J 
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\ 

Mach number, the flow vill be sonic at the midchord, and for higher 
free-stream Mach numbers, a local supersonic region will develop. 

Connected with the formation of this region ±s> the question of 
convergence of the series obtained from the iteration process to repre- 
sent the maximum velocity increment. This question of convergence is 
especially important because the maximum velocity increment is expected 
to be the first velocity component at any point in the flow to diverge, 
and this divergence signals the failure of the iteration process to 
serve as a method of solution. If several terms of a series are known 
and subsequent terms are assumed to decrease in the same manner, an 
estimate of the domain of convergence may be made as follows: 

The limiting (T -*■ 0, x ■+ 0) perturbation velocity at the midchord 
is a sum of terms (equations (3), (15), and (30)) 

n 
lim (px = 
x -+ 0 
y -*• o 

_sin t fc \TR  I s=0 
t=«/2 

h-1 
n      -g- 

= 1 Kn_1 Z ZLhi h(-l) 

~  ß r   P 

h j 

n 

Jnj 

(41) 

or 

lim <Pv ~ R Z ^ 
X 

y 
o 
o 

n 

n 
(42) 

The 
n 

P 
n 

are seen by definition to depend only on the Lj. which intro- 

duce the effect of the shape of the body. The series (42) will converge 
if the limit of the ratio of successive terms is less than 1 for all n: 

lim 
n 

n+1 
P 

■1 n 
D 

< 1 
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or 
n-1 

Kl  = S-1-13  n 
P_    n-*„ (43) 
n 
P 

where Kz    is the maximum value of the similarity parameter for which 
convergence of the iteration process will occur. ^ 

The so-called potential limit Mach number, or free-stream Mach w 

number for which the solution diverges for any T, is defined by 

ß3 
= KZ 

or 

2 ,   r-1  2. MZ  '^W _ f» (44) 
(i - M;

2
)
3/2
  

T 

SURFACE VELOCITIES 

For small disturbances such that the squares of the perturbation 
velocities may be neglected compared with unity, the transformed limit- 
ing perturbation velocity on the ellipse is 

*x <*>0) = -^:Ft (0,t) 

n 
-r-i-r Z Kn 2 Z Lh A  h sin ht 
sin t n   h j  J 

or, in the x,y-plane, 

»x <x>°) = iin-fc 1 * K11"1 2 2 Lhj h sln ht (45) 
n    h j 

Equation (45) will hold only on that portion of the surface along which 
J = 1 (figs. 5 and 6). 
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v 

The local Mach number at the midchord Is given for the small per- 
turbation case by equation (27) of reference 11: 

M2 - 1 = - ß2 + 2rM <px (0,0) (46) 

In a previous discussion concerning figure 2 it was seen that the 
hyperbolic region of the limiting equation (7) represents very nearly 

£2       the region of supersonic flows for a perfect fluid. Therefore the 
^       parabolic curve 

Fx = |  or  <Px = |p (47) 

can be used to outline the supersonic region or to find significant 
points on it in the physical plane. Whether or not an iteration solu- 
tion can correctly describe a supersonic flow may be questioned, for 
as performed here the iteration procedure is essentially the solution 
of a set of elliptic equations. The applications which follow, although 
not answering this question directly, do suggest convergence of the 
solution in the hyperbolic region. 

* For any thickness ratio T the critical Mach number, or lowest 
free-stream Mach number at which some point in the flow field becomes 
sonic, is given by 

FMT 

K„ 
p3   -c 

or 

c ^ 2  c / _ c 
.     ,3/2   " T 
(1 - Mc) ' 

(48) 

APPLICATION TO ELLIPTIC CYLINDER 

The expression that describes the upper surface of an ellipse 
whose major axis coincides with the direction of flow is 

y = T g(x) = T/\/l - x2 

(49) 
= T sin t     (s -* 0) 
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It follows from equation (27) that 

1 
F = Ke"S cos t (50) 

Subsequent approximations through the sixth have been calculated 
by means of the iteration process previously described. The coefficients 
n   n       n n   n   n       n 
A^.,  B^, and C^. and the 1^ , M^, NhJ, and 0^ calculated by 

means of equations (33) and (39) are presented in table I in matrix 
arrangement. From equation (4l), 

<P  (0,0) = 5 (1 + 0.35237 K + 0.36986 K2 + 0.51836 K3 + x       ß 

r- 

0 .83711 K
4 + 1.42014 K5 + . . . ) (5l) 

For comparison, the maximum disturbance velocity as determined by 
the first three approximations of the iteration solution herein des- 
cribed is plotted (fig. 7) with the exact solution of Hantzsche (ref- 
erence 12). Hantzsche's iteration process is based on an expansion of 
the stream function in powers of the thickness ratio. The agreement 
between the two methods appears close enough to justify the calcula- 
tion of higher approximations for obtaining a better estimate of the 
potential limit Mach number. 

An estimate is made in figure 8 of the largest value Kj of the 
similarity parameter for which the series for the maximum velocity 
increment will converge. The broken line joins successive estimates 
of Kj obtained by comparing terms by means of a ratio test described 
in the section "MAXIMUM VELOCITY INCREMENT AND CONVERGENCE." An 
examination of the slopes of the segments of the line indicates that 
the limiting ratio of these slopes, for large n, is about l/2. If 
it is assumed that these slopes continue to decrease in a ratio l/2, 
the greatest lower bound of the broken line curve can be calculated 
by a geometric progression. The estimated greatest lower bound of the 
broken line is then about Kj = 0.56. 

That the solution converges even when some of the flow is super- 
sonic (hyperbolic) is indicated in figure 9, which shows the contribu- 
tion of each approximation to the maximum velocity increment for vary- 
ing K. Supersonic flows lie to the right of the parabolic curve and 
the intersection of this curve and the sixth approximation marks the 
value of the parameter K at which the transition from totally sub- 
sonic flows to partly supersonic flows occurs. This transition 
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point, Kc = 0.595, is also very evident in figure 10 as the intersection 
of the curves, for several values of MQ, of the local Mach number at 
midchord (equations (42) and (46)). 

The surface velocity on the ellipse for three values of K is 
presented in figure 11. The parabolic line, equation (47), is included 
in each case for comparison. Thus in figure 11(a) all velocities are 
subsonic, whereas figure ll(b)  (K = 0.4) shows a partly supersonic 

N       flow. This is in agreement with the previous calculation showing 
E^       transition from subsonic flow to supersonic flow at Kc = 0.395. The 
01       longitudinal extent of the symmetric supersonic region is seen to be 

about l/lO chord, based on six approximations. .The last of this series 
of figures (fig. 11(c)) is for a value of K near K^. Although the 
series for the velocity increment may be converging, it is evident 
that near the midchord the uncalculated approximations are not neglig- 
ible for this value of K. The width of the supersonic region is 
greater than the extent of the region of accuracy of the calculations. 

Curves of critical Mach number and potential limit Mach number 
against thickness ratio have been plotted in figure 12 using equa- 
tions (48) and (44), respectively. 

APPLICATION TO KAPLAN BUMP 

As a second example, the iteration process is applied to the cal- 
culation of noncirculatory flow past a Kaplan section; this prohlem 
has been treated in an exact manner to three approximations in refer- 
ence 4. The Kaplan section has no stagnation points (fig. 5) so that 
nowhere is the boundary condition singular. Its parametric repre- 
sentation is (reference 4), 

cos t 

T ■      (52) 
y = £ (3 sin t - ain 3t) 

Application of equation (27) yields 

F = j  (3e~S cos t - e" S cos 3t) (53) 

The second, third, and fourth approximations have been calculated 
according to the procedure given in the section "HIGHER APPROXIMATIONS" 

n   n 
and are recorded in table II as arrays of the constants L-u*, Mi,*, and 
n n   n       n nJ  nJ 
N^j.  The constants A^*, B^, and C^* represent the nonhomogeneous 

terms of the differential equations (33). 
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* 

The chordwise perturbation-velocity distribution at the surface is 
plotted in figure 13 for comparison with the result of Kaplan (refer- M 

ence 4) for T = 0.10 and MQ = 0.75. The agreement is probably suf- 
ficient from a practical standpoint to justify the labor-saving limit- 
ing processes that have been made in the iteration process. 

An estimate of the limiting value of the parameter K for which 
the series for the maximum velocity increment will converge is made <r> 
in figure 14, where the ratios of successive coefficients in the series      ^ 
for the maximum velocity increment are plotted for the first four terms.      C\> 
The series for (<Px)max to four approximations is calculated from 
equation (4l) to be 

(cp )   =%{% +  0.81762 K + 1.15715 K2 + 2.11564 K3 + . . .)  (54) v x'max  ß \6 / 

An analysis similar to that employed on the corresponding series for 
the elliptic cylinder indicates that the series (56) will converge for 
values of K < 0.387. 

The value K7 = 0.387 is considerably above the value of K for 
which the flow becomes sonic at the midchord, as given in figure 15 by 
the intersection of the fourth approximation curve and the parabolic 
curve. The converging nature of the successive approximations indi- 
cates that this value of Kc = 0.270 will be lowered only slightly 
by increased accuracy from higher-order terms. 

The variation of the local Mach number corresponding to the maxi- 
mum velocity increment has been calculated by means of equation (46) 
and is plotted against the similarity parameter for several values of 
free-stream Mach number in figure 16. The calculations are based on 
four approximations. The velocity increment on the surface of the bump 
is plotted as a function of distance along the chord in figure 17. Of 
these, figure 17(a) shows the only completely subsonic flow. In fig- 
ure 17(b), Kc < K = 0.3 < Kj. Hence the flow is everywhere convergent, 
but near the midchord there is a small supersonic region represented by 
those values of (Fx)max above the parabolic curve. For figure 17(c), 
the similarity parameter is chosen slightly larger than the estimated 
maximum for convergence, Kj, as obtained from equation (43) and fig- 
ure 14j and, although successive approximations still decrease monoton- 
ically, the curves of figure 17(c) should not be expected ultimately 
to converge. 

Figure 18 shows the critical Mach number Me and the potential 
limit Mach number M^ as functions of thickness ratio. For compari- 
son, M  and M,  as computed by Kaplan (reference 4) are included. 

The present calculations indicate that isentropic mixed flow is 
restricted to a considerably smaller range of Mach number. 



WACA TN 2511 23 

CONCLUDING REMARKS 

An iteration procedure similar to that employed in the Ackeret- 
Prandtl type procedure has "been utilized in the calculation of the 
symmetric-type transonic potential flow for an elliptic cylinder and 
a Kaplan section. In order to obtain an estimate of the region of con- 
vergence of this type of solution, the work has been carried through 
six approximations for the elliptic cylinder and through four approxi- 

ro       mations for the Kaplan section. 
CO 

01 The results indicate that the iteration solution converges for a 
range of the similarity parameter for which supersonic regions exist 
in the flow field. For these hyperbolic regions, the nonlinear term 
of the potential equation is not> strictly speaking, small compared 
with either term of the Laplacian. The iteration procedure presented 
herein may therefore be applicable to a greater range of disturbance 
velocities than would be indicated by its method of formulation, in 
which the nonlinear term is considered a perturbation on the Laplacian. 

The results have been presented in conformity with the transonic 
similarity law. The essential characteristics of a flow may then be 
presented in a simple and direct manner by classifying the flow with 
respect to significant values of the similarity parameter, for example, 
the critical and potential limit values. 

Lewis Flight Propulsion Laboratory 
National Advisory Committee for Aeronautics 

Cleveland, Ohio, June 26, 1951 
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APPENDIX - SYMBOLS 
* 

The following symbols are used in this report: 

A,B,C constants 

c* critical velocity 

F perturbation potential in    xT]-plane LO 
w w 

f function of    X,T] 

g thickness distribution along chord 

g.l.h.        greatest lower hound 

j/iillj        functional determinant, or Jacobian 
\s,t/ 

K transonic similarity parameter 

KQ critical value of similarity parameter 

K7 potential limit of similarity parameter 

L,M,N,0 constants, identified by superscripts and subscripts 

M local Mach number 

Mc critical Mach number 

M7 potential limit Mach number 

MQ free-stream Mach number 

n number of approximations 

P particular integral 

q function of s 

s,t elliptic coordinates 

U free-stream velocity 

x,y cartesian coordinates 

ß A/l " MQ A£    -2 
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rM Mo2(l + 3ti MQ2) 

r ratio of specific heats 

A Laplacian 

6 constant 

1 transformed y-coordinate 

T thickness ratio 

<P perturbation potential 

<o,p,a constants, identified by subscripts 

Subscripts: 

x,y,T],e ,t indicate partial derivatives 

h, j,k,ir i/P»r,v summation indices 

Superscripts: 

X,n,v number of approximation 

25 
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TABLE I - FIRST APPROXIMATION FOR ELLIPSE 

(a) A B 0>)  L 11 1.0 

TABLE II - SECOND APPROXIMATION FOR ELLIPSE 

(a) A bj 

2 

1 -0.50000 

3 0.75000 

5 -0.25000 

2 
(D) L hj 

1 2 3 4 5 

1 0.33333 -0.16667       

3   -0.15000 0.10000 ___   

5 ___ 0.01190 ___   -0.00476 

TABLE III - THIRD APPROXIMATION FOR ELLIPSE 

3 
(a) A 

hj 

2 3 4 5 6 

1 -0.33333 -0.18571 0.22500 —- 0.00595 

3 0.50000 0.86667 -0.67500   -0.04167 

5 -0.16667 -0.15238 0.67500 0.08929 

7 -__ 0.53095 -0.22500   -0.19118 

9   -0.05952     0.02381 

3 

0>) L 
hj 

h \ 1 2 3 4 5 6 7 9 

1 0.23084 -0.11111 -0.02321 0.1500   0.00017 — — 

3   -0.10000 0.15018 -0.09643 ___ -0.00154   

5 — 0.00794 0.07202 -0.07500 0.00388 0.00812   — 

7     -0.01327 0.00682   0.00595 -0.00331 

9     0.00083   — -0.00053   0.00007 
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TABLE IT - FODHTH AEPE0X3MATI0N JOB ELLIPSE 

4 
M  A 

hj 

2 3 4 5 6 7 8 9 10 

1 0.14320 0.09286 -0.16301 0.04965 0.01268 0.00436 0.00179   0.00007 

3 -0.21480 -0.43335 0.31663 0.02354 -0.02353 -0.02620 -0.00936 — -0.00007 

5 0.07160 0.57662 0.19904 -0.52948 0.06649 0.02305 0.03632 — 0.00024 

7   -0.26551 -0.75659 0.80076 -0.07488 0.05956 -0.07065 — -0.00132 

9   0.02977 0.49494 -0.38547 0.02823 -0.10221 0.06084   0.00262 

11     -0.09795 0.04100 — 0.04808 -0.01895 — -0.00222 

13 ... — 0.00693 — -0.00464 — — 0.00069 

4 
(D) B hj 

h\ 4 

1 0.16250 

3 -0.48749 

S 0.48749 

7 -0.16250 

4 
(c) L 

hj 

\ J 1 2 3 4 5 6 7 8 9 10 11 12 13 

1 0.22498 -0.09547 -0.02332 0.01016 -0.00414 -0.00072 -0.00018 -0.00006 ... -0.00000 ... ... ... 

3   -0.08592 -0.04018 0.06871 -0.00294 0.00241 0.00141 0.00034 ... 0.00000 ... ... ... 

5 — 0.00682 0.07203 -0.05206 0.01638 -0.01209 -0.00192 -0.00186 ... -0.00001 ... ...   

7 — — -0.01328 -0.04347 0.00673 -0.01152 -0.01829 0.00942 ... 0.00005   ... ... 

9   — 0.00083 0.01523 -0.01377 0.00125 -0.00639 0.00716 -0.00132 -0.00028 — ... — 

11     — -0.00187 0.00085 — 0.00134 -0.00066   -0.00021 0.00012 ... ... 

13 — ... — 0.00009     -0.00008 ... ... 0.00002     -0.00000 

(a) M hi 

3 4 5 6 7 

1 -0.02167   ...   

3 -0.14445 0.13928 — ... — 

5 — 0.10833 -0.10590 ... — 

7 . — -0.00985 ...   0.00851 
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TABLE VI - SIXTH APPEOXMATIOH FOE ELLIPSE 

6 
(a) A *J 

2 3 4 5 6 7 8 9 

1 -0.35512 -0.20367 -0.54907 0.53760 0.52224 0.39212 0.01983 -0.00962 

3 0.53268 0.95047 2.16610 -1.13329 -3.53878 2.24494 0.27821 -0.05669 

5 -0.17756 -1.26381 -3.67930 -0.80210 8.32920 -3.82950 -0.96660 0.19693 

7   0.58229 3.23792 4.50042 -8.29361 0.43150 1.86413 0.21831 

9   -0.06528 -1.43991 -5.29265 1.98519 6.03432 -2.58489 -0.95363 

11    - 0.28437 2.85636 2.82542 -7.73804 2.34101 0.50963 

13   — -0.02010 -0.75951 -2.64252 4.22655 -1.11805 0.50443 

15   _-_   0.09828 0.97957 -1.11033 0.22088 -0.54201 

17   ___   -0.00511 -0.18374 0.13964 -0.01486 0.14955 

19         0.01776 -0.00697   -0.01773 

21       -0.00072   --_ 0.00082 

(a) 
6 
A hJ - CQ noluded 

10 11 12 13 14 15 16 18 

1 0.00467 -0.00511 0.00088 -0.00052 -0.00014 -0.00002 -0.00000 -0.00000 

3 0.00801 0.01975 0.00047 0.00045 0.00043 0.00006 0.00002 0.00000 

5 -0.02668 -0.05440 -0.01173 0.00009 -0.00080 -0.00001 -0.00007 -0.00000 

7 -0.33773 0.17216 0.01806 0.00866 0.00131 -0.00007 0.00008 0.00000 

9 0.69461 -0.17444 0.00844 -0.03344 -0.00290 -0.00018 -0.00005 -0.00000 

11 0.11262 -0.17842 -0.02885 0.03281 0.00916 0.00084 0.00007 0.00000 

13 -1.00872 0.39807 -0.01228 0.02266 -0.01671 -0.00085 -0.00029 0.00001 

15 0.66684 -0.19573 0.05158 -0.05514 0.01389 -0.00039 0.00059 -0.00003 

17 -0.12088 0.01812 -0.03191 0.02680 -0.00423 0.00115 -0.00053 0.00004 

19 0.00725 ___ 0.00568 -0.00239 __— -0.00057 0.00017 -0.00003 

21   --- -0.00033     0.00005   0.00001 
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TABLE VI - SIXTH APPROXIMATION POE ELLIPSE - Continued 

IN 
CM 

0>) B hj 

h\ 4 5 6 7 8 9 10 12 

1 -0.44175 0.27651 0.17244 -0.21716 -0.07427 0.00325 -0.01077 -0.00071 

3 1.32524 0.07448 -0.95724 1.36008 0.22528 0.09495 0.02864 0.00142 

5 -1.32524 -2.37617 1.17188 -1.02543 -0.60779 -0.40598 -0.11295 -0.00071 

7 0.44175 3.51929 1.55575 -3.43737 1.21433 0.34626 0.45626 0.00399 

9 _ —— -1.66999 -3.93061 5.82295 -1.13510 0.47585 -0.84175 -0.02074 

11 _ —— 0.17588 2.42446 -2.77921 0.37754 -0.89299 0.69364 0.02897 

13 „__ ___ -0.46759 0.27615 — 0.41725 -0.20907 -0.03169 

15 __— 0.03092     -0.03859 0.00947 

^ NACA^7* 
6 

(c)  C 
*J 

1 -0.38239 

3 1.24277 

5 -1.43397 

7 0.66918 

9 -0.09560 
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TABLE VI - SIXTH APPROXIMATION FOE ELLIPSE - Continued 

6 
(a) L 

to 

00 

hj 

1 2 3 4 5 6 ' 7 8 9 10 

1 0.34464 -0.11837 -0.02546 -0.05231 0.02720 0.01467 -0.00949 -0.00061 -0.00011 0.00003 

3 ___ -0.10654 -0.40107 0.52581 -0.06792 -0.13205 0.06802 0.00625 -0.00046 0.00016 

5   0.00846 0.07899 0.27792 -0.66704 0.58684 -0.18449 -0.03118 0.00119 -0.00076 

7     -0.01456 -0.09487 -0.12642 0.65280 -0.67976 0.21063 0.01291 -0.00314 

9   ___ 0.00091 0.02215 0.08919 -0.06701 -0.10896 0.08921 0.00838 -0.01008 

11 ... ... _._„ -0.00271 -0.02956 -0.02921 0.09997 -0.03921 -0.02279 0.02609 

13   ___   0.00013 0.00527 0.01955 -0.03495 0.01065 -0.00476 0.01374 

15   -«.- „_„ -_. -0.00049 -0.00517 0.00631 -0.00137 0.00373 -0.00533 

17   --- __- ... 0.00002 0.00073 -0.00058 0.00007 -0.00064 0.00063 

19   ___ „„_ ... ... -0.00005 0.00002 0.00006 -0.00005 

21   -_- ___.  .   0.00000     -0.00000   

(a) L jj. - Concluded 

11 12 13 14 15 16 17 18 19 21 

1 -0.00004 0.00001 -0.00000 -0.00000 -0.00000 -0.00000   -0.00000 ... 

3 0.00018 0.00000 0.00000 0.00000 0.00000 0.00000 ... 0.00000 

5 -0.00057 -0.00010 0.00000 -0.00000 -0.00000 -0.00000 -0.00000 

7 0.00239 0.00020 0.00007 0.00001 -0.00000 0.00000   0.00000 ... 

9 -0.00436 0.00001 -0.00038 -0.00003 -0.00000 -0.00000   -0.00000 __-   

11 -0.01128 0.00051 0.00068 0.00012 0.00001 0.00000 — 0.00000 

13 -0.00829 -0.00073 0.00227 -0.00062 -0.00002 -0.00000   0.00000 

15 0.00188 -0.00060 0.00098 -0.00048 0.00001 0.00002   -0.00000   ... 

17 -0.00011 0.00022 -0.00022 0.00005 -0.00002 0.00002 -0.00000 0.00000 ___ ... 

19   -0.00003 0.00001   0.00000 -0.00000   0.00000 0.00001 ... 

21 1 0.00000     -0.00000 — — -0.00000   0.00000 
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TABLE VII - FIRST APPEOXIMATION FOE KAPLAN SECTION 

(a) A bj = 0 

(b) L bj 

V 1 3 

1 0.75000 ___ 

3 ___ -0.25000 

TABLE VIII - SECOND APPEOXIMATION FOB KAPLAN SECTION 

(a) A bj (If 
2 4 6 

1 -2 -3 -1 

3 3 9 2 

5 -1 -9 -4 

7 0 3 5 

9 0 0 -2 

2 
(b) L hj 

e"a 1 2 3 4 5 6 7 9 

1 0.32412 -0.09375 — -0.02813 — -0.00402 ___ — 

■ 3 — -0.06438 -0.20566 0.18081 — 0.01042 __. — 

5 — 0.00670 ___ 0.14063 -0.05382 -0.05114 ___ — 

7 — ___ — -0.01278 — -0.05409 0.05367 — 

9 — _ — ___ ___ — 0.00625 — -0.00417 
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TABLE X - FOURTH APPROXIMATION POE KAPLAN SECTION 

4 
(a) A 

hj 

n\ 2 3 4 5 6 7 8 9 

1 -0.27369 -0.10158 -0.70184 0.16384 -0.25999 -0.08941 0.27562 0.00827 

3 0.41053 0.47402 2.21465 0.20698 -0.14470 0.34639 -0.94946 0.74600 

5 -0.13684 -0.63029 -2.54101 -2.37393 -0.09017 -0.37686 3.50541 -2.30284 

7 — 0.29040 1.28382 3.50709 2.64389 -6.52365 1.77718 -2.32167 

9 ... -0.03256 -0.31320 -1.68637 -3.74815 -3.76360 2.16703 1.62381 

11 ... ... 0.06195 0.18240 1.95475 2.08185 4.82315 -3.15023 

13 ... .— -0.00437   -0.38139 -0.24116 -4.05218 1.40343 

IS -T- ... -__ 0.02576 ... 0.80760 -0.10562 

17 ... — ... — _.. ... -0.05443 — 

19 ... ... .._ — _-- - — ... ... 

21 ... ... ... — — ... ... ... 

(a) A 
hj 

- Concluded 

\3 10 11 12 13 14 15 16 18 

1 0.30919 -0.13252 -0.03337 -0.00319 -0.03780 0.00311 -0.00705 -0.00035 

3 -1.56Ü53 0.63407 -0.17619 0.30166 0.04789 0.00980 0.01409 0.00035 

5 1.92675 -0.67733 0.58936 -0.64026 -0.13063 -0.06476 -0.00705   

7 1.37105 1.37105 -0.18288 0.12860 0.42178 0.09728 -0.02032   

9 5.14985 -2.08866 -0.71016 -0.22855 -0.46413 0.00347 0.07111 -0.00280 

11 -2.88950 -2.33567 0.76885 1.04169 0.41837 -0.03373 -0.07825 0.00796 

13 -3.37322 6.15880 -0.99893 0.85868 -0.95828 -0.07389 0.02888 -0.00818 

15 3.42262 -3.15298 1.55071 -2.77829 1.12471 -0.09933 -0.01642 0.00786 

17 -0.71285 0.22345 -1.01520 1.34638 -0.42191 0.32418 0.02302 -0.01576 

19 0.04935 —_ 0.22411 -0.02672 ... -0.18607 -0.00802 0.01698 

21     -0.01630 ... — 0.01994 ... -0.00606 

4 
(b) B 

hj 

h\ 4 6 8 10 12 

1 0.01714 0.02471 0.02657 0.00976   

3 -0.05142 -0.11585 -0.07267 -0.01881 -0.00395 

5 0.05142 0.24498 0.17382 0.07426 0.01578 

7 -0.01714 -0.22984 -0.35115 -0.09793 -0.01973 

9 — 0.07599 0.33867 0.18995 0.01776 

11     -0.11524 -0.19764 -0.03354 

13     ... 0.07041 0.03749 

15         -0.01381 
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TABLE X - FOURTH APPROXMATIOII   FOB KAPLAN SECTION - Concluded 

4 

M L HJ 

\3 1 2 3 4 5 6 7 8 9 10 

1 0.37947 -0.09123 -0.01270 -0.04618 0.00683 -0.00719 -0.00186 0.00450 0.00010 0.00314 

3   -0.08211 -0.36592 0.30799 0.01294 -0.00727 0.00866 -0.01764 0.01036 -0.01727 

5   0.00652 0.03939 0.28741 -0.30613 0.01610 -0.01570 0.09171 -0.04112 0.02595 

7     -0.00726 -0.03903 -0.14613 -0.21970 -0.78172 -0.45988 0.05554 -0.04627 

9     0.00045 0.00482 0.03011 0.08374 0.11761 -0.10872 -0.30580 0.27104 

11     -0.00059 -0.00190 -0.02300 -0.02891 -0.08519 0.07876 0.12864 

13 ...     0.00003 —_ 0.00287 0.00201 0.03859 -0.01595 0.04919 

IS     — ...   -0.00014 ... -0.00502 0.00073 -0.02738 

17 ...     ... — — ... 0.00024 ... 0.00377 

19         ... ... ... -0.00019 

21   ...       ... ... ... — ... 

4 
(c) L hj 

h\ 
11 12 13 14 15 16 17 18 19 21 

1 -0.00110 -0.00023 -0.00002 -0.00019 0.00001 -0.00003 .... -0.00000 — — 

3 0.00566 -0.00130 0.00189 0.00026 0.00005 0.00006 — 0.00000     

5 -0.00706 0.00498 -0.00445 -0.00076 -0.00082 -0.00011 — ... ...   

7 0.01904 -0.00198 0.00107 0.00287 0.00035 -0.00010 — ... — ... 

9 -0.05222 -0.01127 -0.00260 -0.00404 0.00002 0.00041 — -0.00001 —   

11 -0.14319 0.03191 0.02170 0.00558 -0.00032 -0.00058 — 0.00004 — 

13 -0.12831 0.04140 0.05407 -0.03549 -0.00132 0.00033 — -0.00005 ... ... 

15 0.03032 -0.01919 0.04961 -0.03878 0.00756 -0.00053 . — 0.00008   ... 

17 -0.00133 0.00700 -0.01122 0.00454 -0.00507 -0.00070 0.00404 -0.00045 — ... 

19 -0.00103 0.00014   0.00137 o.ooooa   -0.00046 -0.00006 ... 

21   0.00008 —   -0.00009 — ... 0.00005 — -0.00002 

(d) M w 

\ 3 3 4 5 6 7 8 9 10 11 12 13 15 

1 — 0.00114   0.00071 ... 0.00042   0.00010 — ... ... — 

3 -0.07900 -0.00735 -0.00429 ... -0.00132   -0.00054 — -0.00003 — — 

5 -0.00571 0.23739 0.02227 ... 0.00446   0.00099 — 0.00013 ... — 

7 0.00052   0.01768 -0.14591 -0.02341   -0.00192 — -0.00021 — ... 

-0.00169   -0.01992 -0.09021 0.01000   0.00028 ... ... 

11 ...     0.00202   0.00941 0.10617 -0.00146 ... ... 

13       — ... ... -0.00102 — -0.00150 -0.03303 ... 

15 — ___ ... — ... — —   0.00017 — 0.00331 
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